
GPU-Based Screen Space Tessellation

Jon M. Hjelmervik and Trond R. Hagen

Abstract. We propose a method for providing high quality view-

dependent tessellations of certain types of parametric surfaces in-

cluding B-spline surfaces. The objective is to ensure that, regadless

of the camera positions, the rendered triangles will cover approx-

imately the same number of pixels. In order to do this efficiently

we use graphics hardware to sample and evaluate the surfaces. In

contrast to previous work we use triangles as primitives in the ren-

dering of the samples. This paper also describes certain artifacts

that can occur and how to avoid these.§1. Introduction

Due to the demand for advanced real time visualization in computer
games, graphics cards have gradually evolved both with respect to perfor-
mance and flexibility. The introduction in 2003 of programmable 32-bit
floating point fragment processors into commodity hardware was a major
breakthrough, because it led to both more advanced visualization and to
the use of such processors for non-graphical purposes.

Visual inspection of surfaces is important when validating the quality
of CAD surfaces. In this process the goal is not to produce a visually
pleasing image, but rather to produce a correct rendering of the surface.
Focusing too much on performance has a tendency to lead to the loss of
important details.

The standard method for visualizing a parametric surface is to tessel-
late it (uniformly or non-uniformly) and render the triangulation. The
rendering system performs the lighting calculation using vertex positions
and normals, and linearly interpolates the color values across the triangles.
A more advanced method is to use programmable fragment processors, in
order to linearly interpolate the surface normals (or other relevant quanti-
ties) instead of the colors, and do the lighting calculation per pixel. This

XXX 1
xxx and xxx (eds.), pp. 1–4.

Copyright © 200x by Nashboro Press, Brentwood, TN.

ISBN 0-9728482-x-x

All rights of reproduction in any form reserved.



2 J.Hjelmervik & T.Hagen

strategy produces higher visual quality, but the correct color is still only
obtained at the vertices.

Yet another method is to attach to each vertex in the tessellation the
associated pair of surface parameter values and utilize a fragment shader
in order to (correctly) evaluate the surface positions and normals. This
is possible for various types of surfaces, including B-spline and subdivi-
sion surfaces [1]. While this improves both the visual quality and the
correctness, we still have the problem that only the vertices are rendered
correctly. Therefore it is necessary to use a tessellation where each ren-
dered triangle only covers a few pixels on the screen. This paper presents
a method that utilizes the graphics processing unit (GPU) to create a
view-dependent tessellation, where each triangle covers approximately the
same number of pixels. §2. Related Work

2.1. View-Dependent Tessellation

There are numerous methods for view-dependent tessellation of parametric
surfaces. These include hierarchical methods like quadtree-based triangu-
lations [4] and progressive meshes [3]. Common to all methods is that the
tessellation is computed on the CPU. A copy of the tessellation is kept in
graphics memory, and must be updated continuously. Such methods may
cause high CPU use, and the bandwidth to the GPU may limit the frame
rate.

2.2. GPU-Based Surface Evaluation

Pre-evaluated basis functions are commonly used in efficient implementa-
tions of B-spline surface evaluation. Evaluation of sub-division surfaces
with pre-evaluated basis functions utilizing a GPU is described by Bolz
and Schröder [1]. The basis functions and the control points are stored
in textures, and fetched by the fragment shader, where the surfaces are
evaluated. The method is generalized to all surface types which can be
written as linear combinations of basis functions. Our implementation of
surface evaluation is based on their work.

2.3. Geometry Images

Geometry images were introduced by Gu et al. [2] as a method for repre-
senting triangulations as images. To create a geometry image the triangu-
lation is cut such that it becomes topologically equivalent to a disk. This
cut version is then parametrized on a rectangle before it is sampled, one
sample per pixel in the image. This representation allows the triangulation
to be stored without any topological information.

A similar technique is that of Multi-chart geometry images by Sander
et al. [5]. The triangulation is cut into several charts, such that each chart



Screen Space Tessellation 3

is topologically equivalent to a disk. Each chart is then parametrized and
sampled before the charts are rasterized and stored in a texture. When
reconstructing such an image G0 continuity only holds within each chart.
Therefore zippering steps are necessary to ensure that the reconstructed
triangulation is continuous. We create similar charts in our method. These
charts are sampled on the GPU and the resulting image is used directly as
vertices for rendering, without being processed by the CPU. It is therefore
undesirable to do zippering. Instead, we create images that lead to a
continuous triangulation.

2.4. Per Pixel Correct Rendering

Yasui and Kanai [6] proposed a method for using the surface evaluation
capabilities [1] of modern GPUs for correct rendering of surfaces. Loosely
speaking their method renders a coarse tessellation of the surface using a
fragment shader which evaluates the surface using the linearly interpolated
parameter values, and “moves” the fragment into the correct position of
the frame buffer. Since the fragment processor does not have the free-
dom to choose which pixel it is writing to, i.e. moving the fragment, the
algorithm is split into the following steps.

First the tessellation is rendered using a fragment shader that returns
the parameter values (linearly interpolated across each triangle). The
positions and surface color (calculated based on position and normal) are
then calculated and stored in separate off-screen buffers, which in turn
are converted into vertex arrays. The vertex arrays are then rendered as
points. Since one of the vertex arrays contains the evaluated positions,
the points are drawn into the correct positions in the frame buffer.

The result is an image where each pixel is colored based on the “moved”
position and the surface normal evaluated accordingly. As the final image
is generated by rendering points, it may contain holes. The solution pro-
posed is to enlarge the off screen buffers used, which in turn will increase
the number of points drawn. This will reduce the probability of holes, but
the amount of enlargement needed is not clear. Only points originating
from parameter values of visible geometry is rendered. This may in some
cases cause incorrect rendering or holes in the geometry.

We propose a method inspired by Yasui and Kanai [6], which aims to
remove these artifacts. In addition our method ensures that the resulting
image does not contain holes or other defects.§3. GPU-Based Screen Space Tessellation

Our method creates a new tessellation based on an initial coarse tessel-
lation T (u, v) (a piecewise linear interpolation) of a parametric surface
S(u, v). The goal is that each new triangle covers a predefined number
of pixels independent of the distance to the camera. The new vertices



4 J.Hjelmervik & T.Hagen

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

Fig. 1. Rasterization of a surface, which leads to 11 triangles.

��������������������������������

��������������������������������

������
������
������
������
������
������
������

������
������
������
������
������
������
������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

������
������
������
������
������
������
������

������
������
������
������
������
������
������

��������������������������������

Fig. 2. Dashed lines mark boundary between the six pixels, solid lines
mark edges of the resulting triangles and the arrows show the ordering of
the vertices in the triangles.

are created using a similar method to that of Yasui and Kanai [6], but
instead of treating the vertices as points, we treat them as vertices of a
triangulation, as illustrated in Figure 1. Therefore our method does not
leave gaps in the surface when the neighboring vertices “moves away” from
each other.

Since each vertex is lit correctly and each triangle is small the resulting
image has acceptable quality. Further the small triangles ensures that
there will not be noticeable artifacts like popping and flickering.

3.1. Tessellation

In order to re-tessellate, T is rendered into two off-screen buffers. In the
first buffer we store the parameter values, and in the second we store S

evaluated at these parameter values. Both these buffers are then converted
into vertex arrays, i.e. the pixels of each buffer are converted into a one-
dimensional array of vertex attributes.

Since the resulting vertices originate from pixels, they are arranged
in a regular grid. It is trivial to create quads between all sets of four



Screen Space Tessellation 5

neighboring vertices. In order to split each quad into triangles, we choose
the diagonal from the lower right to the upper left vertex. The vertices
are then rendered in counter clockwise ordering, as illustrated in Figure 2.

We use the alpha value in the position buffer to mark whether a pixel
is modified or not by the rendering of T . When rendering the new tessel-
lation we use a vertex shader that uses this information to detect if the
vertex is valid (originates from a modified pixel). If the vertex is valid
the position is transformed by affine transformation defined by the fixed
function matrices, otherwise the position is set to (0, 0,−∞). This ensures
that triangles containing invalid vertices are degenerated and not rendered.
Observe that this also holds for triangles containing only one invalid vertex
because the triangle becomes parallel to the viewing direction.

The main steps of the algorithm are:

1. Set up the graphics system for rendering to multiple render targets
(rendering to more than one off-screen buffer). Enable a fragment
shader that evaluates S. The fragment shader outputs the evaluated
positions into one buffer and the parameter values into the other
buffer.

2. Clear the position buffer such that the alpha value is set to zero.

3. Render the initial coarse tessellation T .

4. Convert the off-screen buffers into vertex arrays.

5. Set up the graphics system for rendering to the frame buffer. En-
able the vertex shader that detects if the vertex is valid, and sets the
position accordingly. Enable a fragment shader which evaluates the
surface normal of S, and does the lighting calculation based on this
normal. Set up the graphics system to use the vertex arrays from
Step 4 such that the vertex arrays containing positions and param-
eter values are used as vertex position array and texture coordinate
array respectively.

6. Use a predefined index array in order to render the new tessellation.

3.2. Objects with boundaries

When dealing with objects that have boundaries various issues arise. The
midpoint of each fragment is used in the linear interpolation process of
the parameter values. Therefore the parameter values at the fragments
nearest the boundary will generally not belong to the boundary of the
object. This would result in a tessellation which is shrunk related to S

and have a jagged boundary. This is solved by rendering the boundary
edges as one-pixel wide lines. Often there are special points along the
surface boundary which the new tessellation should interpolate, e.g. the
corners of the parameter domain. These points should also be rendered.



6 J.Hjelmervik & T.Hagen

(a) The initial tes-
sellation is shown to-
gether with the ras-
terization of its tri-
angles and boundary
edges.

(b) The pixels drawn
into by more than
one of the edges con-
nected to the leftmost
vertex, are replaced
by the vertex.

(c) Boundary repair-
ing finished.

(d) (e) (f)

Fig. 3. Figure (a), (b) and (c) shows the rasterization of the initial tessel-
lation T , and how the off-screen buffers are modified near the boundary.
Figure (d), (e) and (f) shows the topology of the resulting tessellation.

Near a vertex where the angle between the (projected) boundary edges
is less than 45° the pixels may form unfortunate patterns such that corre-
sponding vertices are discarded during triangulation, because all triangles
they are part of are degenerate. The three pixels furthest to the right of
Figure 3(a) form such a pattern. The pattern occurs when the edges on
both sides of a vertex are drawn into the same pixels. We detect the ver-
tex and the connected edges on the CPU. By utilizing the stencil buffer
we detect the pixels that are drawn into by the edges on both sides of
the vertex and replace them with the parameter value of the vertex, as
illustrated in Figure 3(b). Notice that a consequence of this is that the
triangles containing the vertex are somewhat enlarged.

As mentioned we tessellate by connecting neighboring pixels as illus-
trated in Figures 1 and 2. In the cases where three of four neighboring
pixels are drawn into by the rendering of T they may not form a triangle,
which cause the boundary to be jagged, see Figure 3(e). To solve this we
use a fragment shader that detects when this happens, and copies one of
the neighboring pixels into the otherwise empty pixel. Figure 3(f) shows
the result after the steps to correct the problems that have been made.



Screen Space Tessellation 7§4. Hidden Geometry

The resulting tessellation only contains vertices that correspond to param-
eter values that are associated with visible triangles of T . This may cause
parts of the image to remain blank.

4.1. Outside the Viewport

A point S(u0, v0) may be within the viewport while T (u0, v0) is outside
the viewport of the off-screen buffer. Then the screen space tessellation
will not cover this part of the surface, and the boundary of the viewport
will remain blank. This can be avoided by expanding the viewport in
the off-screen buffer until the viewport covers the missing parts of T . By
calculating a upper bound of ‖S(u, v) − T (u, v)‖ it is possible to determine
the necessary expansion.

4.2. Silhouette Issues

Silhouette curves are important features of a surface, and defects in the
visualization of these curves give a false impression of the surface. A
feature of our method is that it provides high quality silhouette curves.

Special care must be taken to ensure that a silhouette curve cT on T

does not hide parts of its corresponding silhouette curve cS on S, i.e. a
point S(u0, v0) on cS has its corresponding point T (u0, v0) on a back facing
triangle. Otherwise there may be missing geometry near silhouette edges
in T where the front facing triangles occlude the back facing triangles. In
order to avoid this we extend the surface across such edges, thus creating
a band of triangles containing the parameter values of the back facing
triangles near the silhouette edges.

4.3. Occluded Geometry

From a given view direction the surface may consist of several layers of
geometry, such that parts of the surface are occluded by layers closer to
the camera. It is important to ensure that points from different layers are
not falsely connected in the new tessellation. Therefore we split T into
charts such that each chart only consists of one layer of geometry.

Each chart may contain points from different layers of T therefore care
must be taken so that these points are not connected falsely. This can
happen when points that are not neighbors in the chart are rendered into
neighboring pixels. We avoid this by requiring that each chart projected
onto the viewport is not self-intersecting within an intersection tolerance of
one pixel. The algorithm should aim at avoiding angles less than 45° along
the boundaries of the charts, because this may lead to larger triangles in
this area.

To improve the performance it is desirable to render all charts into the
same off-screen buffers. We do this by estimating the size of each chart
and then pack the charts into non-overlapping domains of the off-screen
buffers.



8 J.Hjelmervik & T.Hagen

(a) (b)

(c) (d)

Fig. 4. Cubic spline surface, (a) and (b) shows the entire surface, (c) and
(d) are close-ups. §5. Conclusion and Future Work

Our method provides high quality view-dependent tessellations which are
suitable for surface inspection of parametric surfaces, as illustrated in
Figure 4. We also ensure that the final rendering of the surfaces is without
gaps. A coarse tessellation of a free form surface usually captures the main
characteristics of the surface. The geometry of such a tessellation is often
simple. Therefore real-time performance is obtained using simple methods
for detecting silhouette curves and splitting the initial tessellation into
charts.

View-dependent tessellation is an important topic in visualization and



Screen Space Tessellation 9

is useful in numerous applications. By adopting state of the art methods
for creating and packing the charts, our method can be used when the
initial tessellation is of complex geometry. We believe the method can
be of special interest in the topic of terrain visualization, where view-
dependent tessellation is commonly used.§6. References

1. Bolz. J., and P. Schröder, Evaluation of subdivision surfaces on pro-
grammable graphics hardware, submitted for publication, 2003.

2. Gu, X., S. J. Grothler, and H. Hoppe, Geometry images, ACM Trans.
on Graphics 21 (2002), 355–361.

3. Hoppe, H., View-dependent refinement of progressive meshes, in Pro-
ceedings of SIGGRAPH 97, ACM Press, 1997, 189–198.

4. Lindström, P., D. Koller, W. Ribarsky, L. Hodges, N. Faust, and G.
Turner, Real-time, continuous level of detail rendering of height fields,
in Proceedings of SIGGRAPH 96, ACM Press, 1996, 109–118.

5. Sander, P. V., Z. J. Wood, S. J. Gortler, J. Snyder, and H. Hoppe,
Multi-chart geometry images, in Proceedings of the Eurographics/ACM
SIGGRAPH symposium on Geometry processing, Eurographics Asso-
ciation, 2003, 146–155.

6. Yasui, Y., and T. Kanai, Surface quality assessment of subdivision
surfaces on programmable graphics hardware, in Proc. International
Conference on Shape Modeling and Applications 2004, IEEE CS Press,
Los Alamitos, CA, 2004, 129–136.

Jon M. Hjelmervik
Sintef ICT, Applied Mathematics
Oslo, Norway
jon.a.mikkelsen@sintef.no

Trond R. Hagen
Sintef ICT, Applied Mathematics
Oslo, Norway
Trond.R.Hagen@sintef.no


